(2^x)*x-(x^2)=135

Simple and best practice solution for (2^x)*x-(x^2)=135 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2^x)*x-(x^2)=135 equation:



(2^x)*x-(x^2)=135
We move all terms to the left:
(2^x)*x-(x^2)-(135)=0
determiningTheFunctionDomain -x^2+2^x*x-135=0
We add all the numbers together, and all the variables
-1x^2+2^x*x-135=0
Wy multiply elements
-1x^2+2x^2-135=0
We add all the numbers together, and all the variables
x^2-135=0
a = 1; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·1·(-135)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*1}=\frac{0-6\sqrt{15}}{2} =-\frac{6\sqrt{15}}{2} =-3\sqrt{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*1}=\frac{0+6\sqrt{15}}{2} =\frac{6\sqrt{15}}{2} =3\sqrt{15} $

See similar equations:

| 2^x*x-(x^2)=135 | | (2^x)*x-^2=135 | | 2^x*x-x^2=135 | | 10x-9x=4 | | 25p^2+4=0 | | 0=3x^+18x+15 | | 158=45/c | | 0=2x^2+2x+0 | | m-3/4=12 | | m/12=50 | | -6x+4=12x+10-x | | -y/8-8=3 | | 18t^2-10.5t-19=1-1.5t | | -7+5x=x-1 | | (−4−8x)(−5x+6)−(−4−8x)​2​​=-40 | | a/10+6=10 | | (−4−8x)(−5x+6)−(−4−8x)​2=-40 | | (m+5)×(m-6)=-18 | | 4(6n-2)=-200 | | 8=2/3r | | 18p−12p−3p=15 | | x/(x+5)=16 | | X^2(x+7)^2=13^2 | | C=26+1.75n | | 2x^2(x+7)^2=13^2 | | C=17+1.75n | | X^2(x+7)^2=169 | | 2x^2+7^2=13^2 | | 2x^2+49=13^2 | | N=7x28 | | N=28x7 | | 200•(10/x)=1000 |

Equations solver categories